对于奥列耶维奇来说,他很清楚林晓的这个报告,对于霍奇猜想的研究充满了重要性。
以往积分霍奇猜想的两种形式都存在一定的错误,也就是说都被数学家找到了反例,所以数学家们都仍然在追求着一种全新的积分霍奇猜想,能够完美地将霍奇猜想给概括过来。
而现在林晓的报告中,用到了十分严谨的论述过程,提出了这个全新的动机上同调人,然后才得出了这个新的积分霍奇猜想,就这一点来说,就足够让奥列耶维奇十分信任了,而在之后林晓还利用了一个反证法,证明了他的这个积分霍奇猜想是完全正确的,携带了原霍奇猜想所有的信息。
“失去信息”,是阻挠数学发展的一个常见情况,一般都发生在形式的变化中。
比如林晓的林氏定理所解决的函数到层的变化,在过去,不是所有函数都能转变为层,便是因为在转化的过程中,会有一部分信息失去,也就是说,有一部分的信息在转变之后将会损失掉。
而信息不完全的形式,自然也就会对解决数学问题的过程中造成影响,因而如何解决这个问题,就需要发展新的工具。
对于林氏定理来说,就是一个这样实现函数到层之间无损转变的工具。
而霍奇猜想转变为积分霍奇猜想的过程中,就需要利用到上同调可以转换为微分形式的作用,不过,由于工具的受限,这个转换过程就会导致一些信息的丧失,于是也就致使了过去那两种积分霍奇猜想的错误出现。
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.360lele.cc
(>人<;)